Offline handwritten signature identification using adaptive window positioning techniques

نویسندگان

  • Ghazali Bin Sulong
  • Anwar Yahy Ebrahim
  • Muhammed Jehanzeb
چکیده

The paper presents to address this challenge, we have proposed the use of Adaptive Window Positioning technique which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer. This innovative technique divides the handwritten signature into 13 small windows of size nxn (13x13). This size should be large enough to contain ample information about the style of the author and small enough to ensure a good identification performance. The process was tested with a GPDS dataset containing 4870 signature samples from 90 different writers by comparing the robust features of the test signature with that of the user’s signature using an appropriate classifier. Experimental results reveal that adaptive window positioning technique proved to be the efficient and reliable method for accurate signature feature extraction for the identification of offline handwritten signatures .The contribution of this technique can be used to detect signatures signed under emotional duress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Offline Handwritten Signature Verification Using Back Propagation Artificial Neural Network Matching Technique

Handwriting is a skill that is highly personal to individuals and consists of graphical marks on the surface in relation to a particular language. Signatures of the same person can vary with time and state of mind. Several studies have come up with several methods on how to detect forgeries in signatures given to the security implication of signatures to daily business and personal transactions...

متن کامل

Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

متن کامل

Offline Language-free Writer Identification based on Speeded-up Robust Features

This article proposes offline language-free writer identification based on speeded-up robust features (SURF), goes through training, enrollment, and identification stages. In all stages, an isotropic Box filter is first used to segment the handwritten text image into word regions (WRs). Then, the SURF descriptors (SUDs) of word region and the corresponding scales and orientations (SOs) are extr...

متن کامل

An analytical approach towards Offline Handwritten Signatures Verification using Wavelets transforms and other relevant techniques

The various researches conducted for classification of handwritten signatures of people have shown that the task is difficult because there are intra personal differences among the signatures of the same person. The signatures of the same person vary with time, age of the person and also because of the emotional state of a person. The task of classifying the skilled forgery signatures is all th...

متن کامل

Offline Signature Verification Using Image-Processing Techniques

Signature is one of the important method of individual authentication and identification. Signatures. A variety of techniques have been proposed for signature identification in the past. Handwritten signatures are one of the most and effective method of authenticating an individual’s identity. Lot of research is going on for signature recognition. In this paper we have used image processing tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.2700  شماره 

صفحات  -

تاریخ انتشار 2014